Wehrmedizinische Monatsschrift

  • Archiv
  • Kontakt
  • Archiv
  • Kontakt

Suchergebnis
Links
Rechts
Inhaltsverzeichnis
Editorial
Editorial
Resilienz
Im Einsatz und im Leben:​ Bestehen in der Belastung

Resilienz
Expanding the Toolkit for Medics in Combat:​ Operational Resilience Training

Resilienz
Cold Weather Operations – Rahmenbedingungen und ­Schlussfolgerungen für die Forschung für Streit- und Sanitätskräfte

Resilienz
Prävalenz von Adipositas und damit verbundene gesundheitliche Risikofaktoren bei Soldaten der Bundeswehr







Präventivmedizin 2024
“Resilient in Mission.​ Healthy in Life”.​
Präventivmedizin 2024
Individuelle Stressresilienz:​ Begrifflichkeit,​ Messung und Bedeutung für die Prävention stress-assoziierter psychischer Störungen
Präventivmedizin 2024
Neukonzeption der Psychologischen Krisenintervention
Präventivmedizin 2024
Resilienzforschung am Institut für Präventivmedizin der Bundeswehr – von präventivmedizinischen Gesundheitsaspekten bis in den Einsatz
Präventivmedizin 2024
Individuelle und organisationale Resilienz
Präventivmedizin 2024
Biomarker der Resilienz und Leistungsfähigkeit in extremen Umgebungen
Präventivmedizin 2024
Kardiovaskuläre Primärprävention – Evidenzupdate für die S3-Leitlinie „Hausärztliche Risikoberatung zur kardiovaskulären Prävention“
Präventivmedizin 2024
Lungenkrebs-Screening mittels Niedrigdosis-Computertomografie
Präventivmedizin 2024
Versorgungsforschung aus Sicht einer regionalen Sanitätseinrichtung
Präventivmedizin 2024
Resistance Exercise Snacks in der betrieblichen Gesundheitsförderung
Präventivmedizin 2024
MedXFit – Langfristig motivierende Gesundheitsförderung durch medizinisch skaliertes CrossFit®-Training
Präventivmedizin 2024
COMT rs4680 G-allele Carriers in Police and Military SOF have Less Interference Tendency and Better Reaction Time
Präventivmedizin 2024
Metabolische Profile im Leistungssport und militärischen Kontext:​ Die Bedeutung der νLa.​max für differenzierte Leistungsdiagnostik und präventive Trainingssteuerung
Präventivmedizin 2024
Daily Cold Water Immersion:​ A 10-Day Pilot Study on Insulin Sensitivity,​ Brown Adipose Tissue Activation,​ and Cold Acclimatisation in Prediabetic Individuals
Präventivmedizin 2024
AI-based Injury Prevention Assistance System for Automated Motion Analysis of the Lower Extremities to Prevent Injuries Caused by Improper Loading – A Pilot Study
Präventivmedizin 2024
Erprobung und Evaluation zirkadianer Wachsysteme für die Marine
Präventivmedizin 2024
Philosophisch-anthropologische Fragen zur Luft- und Raumfahrt
Präventivmedizin 2024
Das Human Performance Programm im fliegerischen Dienst der Bundeswehr – Erkenntnisse aus der „TOP GUN“-Studie
Präventivmedizin 2024
Gesundheitsfürsorge – „Pro-vention“
Präventivmedizin 2024
Evidenz in der Suchtprävention im militärischen Kontext
Präventivmedizin 2024
Verminderung von akustischen Störungen bei präventivmedizinischen Feldstudien
Präventivmedizin 2024
Messung von Konzentration und exekutiver Kontrolle in präventivmedizinischen Studien
Präventivmedizin 2024
Der ÖGD auf kommunaler Ebene:​ Agent zur Implementation des „Health in all Policies“-Ansatzes?
Tropenmedizin 2024
Rückblick auf das “4th Symposium on Tropical Medicine and ­Infectious Diseases in the International Military Medical Context 2024” – Lehren für den “way-ahead”?

Tropenmedizin 2024
Evaluation of Automated Loop-Mediated Isothermal Amplification (LAMP) Malaria Test for the Parasite Detection in Vectors

Tropenmedizin 2024
Measures to Prevent the Spread of Contagious Diseases by Air Transport

Tropenmedizin 2024
Ethics in Military Medicine in a Changing Global Environment


Tagungen und Kongresse
Früchte der zivil-militärischen Zusammenarbeit
Tagungen und Kongresse
Reservistenarbeit am Institut für Radiobiologie der Bundeswehr:​ Austausch mit der Bundespolizei
Aus dem Sanitätsdienst
IN MEMORIAM Admiralarzt a.​ D.​ Dr.​ Bernd Merkel
Mitteilungen der DGWMP e.​ V.​
Geburtstage November 2024
Tropenmedizin 2024 PDF

Measures to Prevent the Spread of Contagious Diseases by Air Transport

Jörg Siedenburg

Introduction

After a significant drop caused by the SARS-CoV-2 pandemic, air travel recovered and continues to be an important means for exchanging people and goods. More than 4 billion passengers are reported annually. However, contagious diseases can be spread by air traffic as well. Infected patients may use an aircraft and carry microbes to their destination or infect fellow passengers. Aircraft may carry unwanted passengers as well. Insect vectors as blind passengers may carry pathologic agents to the destinations of their vessels. The spread of Dengue Fever, Airport Malaria and Measles are examples.

Regulations on a national and international level, such as the International Health Regulations (IHR), have been implemented to prevent the spread of contagious diseases via international air traffic. The International Civil Aviation Organization (ICAO) has published guidelines for the disinsection of aircraft to preclude the carriage of arthropods.

Fig. 1: Schematic illustration of the ventilation of a large fuselage aircraft

AircraftsasaCarrierofInfectiousDiseases

At a cruising altitude of about 11.000 meters, the ambient pressure is about one-quarter compared to the sea level. A pressure cabin, using bleed air from the aircraft engine, creates a cabin pressure altitude of about 1.600 to 2.400 meters. The ensuing cabin pressure is about 25 % less than at sea level. Because outside air of less than -50 °C has to be heated to comfortable temperatures, the relative humidity of air is shallow. The subsequent physiological conditions on board (relative humidity between 5 and 15 %, 20–30 exchanges of cabin air, cleaning recirculation air with HEPA-(High-Efficiency Particulate Air) filters, laminar airflow in the cabin) make transmissions of infections very unlikely. The uniform forward orientation of passenger seats and little movement inside the cabin constitute more barriers to minimize the risk of transmission of contagious diseases within the aircraft cabin.

Nevertheless, air transport of infectious passengers is forbidden due to medical reasons, and IHR screening procedures prevent the boarding of contagious patients. Boarding, deboarding, and standing in line at check-in and baggage security controls pose a potential transmission hazard, which can be mitigated by additional measures like mouth-nose masks and face shields and keeping distance. During epidemics, often temperature screening before departure and/or after arrival can be implemented to identify infected passengers to deny boarding or isolating and observe them for a certain period to reduce the risk of importing a contagious disease.

During the ground time of scheduled flights, some arthropods may enter aircraft cabins, survive the flight time, and experience physiological conditions that are not arthropod-friendly. Assuming their remaining survival time matches the external incubation period of viruses or other parasites, it will be sufficient to recover from the stress of flight and have enough time to find susceptible humans at their destination to infect. It is very unlikely that all those pre-conditions are simultaneously suitable for a transmission match. Thus, a transmission is a rare event; however, given the many flights, such events happen regularly. There are a couple of reports of malaria transmission inside the aircraft or in the vicinity of airports where aircraft from malaria-endemic areas arrive. In addition, climate change and warmer temperatures in temperate climates make it easier for insects to thrive. Outbreaks of infectious diseases like Dengue Fever, Zika, West Nile Fever, etc., were formerly limited to tropical areas; therefore, the disinfection of aircraft before or during the flight is mandatory in certain countries for flights originating from tropical regions to minimize the risk of exporting them.

Fig. 2: At airports in the tropics not only passengers are boarding, insect vectors may enter as “blind passengers.

Disinsection of Aircraft

D-Phenothrin and Permethrin are used to disinsect aircraft. Both are so-called pyrethroids. Pyrethrum, a natural product from chrysanthemum flowers, was one of the first insecticides. Permethrin has a residual effect primarily on surfaces, affecting insects resting on those surfaces. d-Phenothrin has a small residual effect as well but acts primarily with significant “knockdown“ and “killing” effects on insects. Different methods certified by the ICAO (International Civil Aviation Organization) are recommended. A residual treatment method must be applied every eight weeks. Since 2023, three alternatives have been used.

  • The pre-embarkation method is applied after cleaning the aircraft and catering, and after the cleaned surfaces have dried, 2 % d-Phenothrin as a fast-acting “knock-down”-insecticide is applied (35 g/100 m3).
  • For the pre-departure method, d-Phenothrin in the same concentration is applied after cleaning and catering with the passengers seated and the overhead lockers still open.
  • The on-arrival method is a contingency method and will be applied if the authorities at the destination are unsatisfied with the previous disinsection. It is applied before opening the doors of the aircraft.

Many airlines still use the so-called top-of-descent method or in-flight spraying (figure 3). D-Phenothrin is used as well. In each aisle a flight attendant has to walk slowly down the aisle and spray from two containers. The empty containers must be delivered to the health authorities. A standard announcement must announce each disinsection. The previous disinsection must be documented, and entry into the Declaration of Health must be mandatory.

Fig. 3: Top of descent disinsection with d-Phenothrin applied by the flight attendant from two bottles

Nevertheless, although all the different methods described minimize transmission of contagious diseases, the risk can never be reduced to zero. If clusters of exotic infections are found, quick diagnosis, thorough history, and measures to contain an initially small outbreak are required on a general level. A quick diagnosis can save the lives of those infected personally and potentially contact persons on a general level.

TransportofContagiousPatients

Air transport of contagious patients remains a big problem. When isolating a patient, who needs medical care, closed and open isolation are possible. In closed isolation, the patient is lying inside a container, and there is limited access for physicians and nurses from outside. Only minimal procedures can be performed. In open isolation, patients, doctors, and nurses are inside the same container, and complex procedures and logistics are possible. Both methods have been realized in air transport, using hypobaric pressure inside the containers. The latter prevents viral contamination from inside to outside. Small containers a little bit bigger than litter have been used in the French Forces for years. IsoArk® and EpiShuttle® are commercial solutions. However, these methods suit contagious diseases, not highly contagious diseases like hemorrhagic fevers.

Fig. 4: EpiShuttle® Isoltionstrage an Bord einer Pilatus P24 (Bild: Pilatus Aircraft Ltd, Schweiz)

The problem is a loss of cabin pressure. This is a rare event which might have catastrophic consequences for the transport of contagious patients. An aircraft leak would result in a sudden drop in cabin pressure; the container would explode. Viruses would spread in the form of aerosols and contaminate all persons on board and a vast area at a potential crash site. Therefore, countermeasures in case of a loss of cabin pressure are required to mitigate the risk. In 2014, an A 340 aircraft, the “Robert Koch,” was equipped accordingly for transporting German soldiers assisting in the Ebola virus outbreak in West Africa. It consisted of a tent-like container for patient and treatment, another one for doffing (get out of personal protection equipment [PPE]), and for donning (get into PPE) and stocks. All three were inter-connected and connected with an emergency pressure equilibration, basically a big plastic sack that would hold several hundred cubic meters of air in case of a loss of cabin pressure. The aircraft had never been used and was dismantled the following year. Should the need arise again, a copy of this make-shift model could not be repeated because many standards for aircraft construction, which also apply to equipment, would not allow for a simple copy.

Another aircraft used for transporting highly contagious patients was created under the aegis of the US CDC in the aftermath of the SARS epidemic in 2006. No construction details are published. Whether a loss of cabin pressure is being catered for is not clear.

In 2019, a project for a pan-European solution had been planned. The German Ministry of Foreign Affairs, Lufthansa Technik, Charité University Hospital in Berlin, and the EU were partners. It was based on a container solution consisting of three standard metal containers fitting to big transport aircraft and connected to a big plastic sack for pressure equilibration. These would have been stored in Berlin and fitted to any by any EU member. However, after significant planning and work had been done, the project was stopped for some reason.

For now, there would be no way to repatriate a highly contagious patient from overseas to Germany or any other European state. Another problem that would have to be addressed is that—different from scheduled air transport—state aircraft like the one we discuss would need a special permit to use the air space of all the countries overflown. The responses of several national aviation authorities to a request for air transportation of a patient with hemorrhagic fever can only be speculative.

References

  1. Siedenburg J: Luftverkehr und kontagiöse Erkrankungen. In: Siedenburg J, Küpper T (Hrsg.): Moderne Flugmedizin. Gentner-Verlag, Stuttgart 2015.
  2. Siedenburg J: Update kontagiöse Erkrankungen und internationaler Flugverkehr. FuR 2020; 27(3): 130–135. mehr lesen
  3. WHO (2023): WHO aircraft disinsection methods and procedures. , last access October 10, 2024. mehr lesen

Author

Captain (Navy MC Res) Dr. med. Jörg Siedenburg
Regional Medical Officer
German Embassy Nairobi
Kurstraße 36, 10117 Berlin
E-Mail: arzt-1@nair.auswaertiges-amt.de

Zeitschriften
Wehrmedizinische Monatsschrift – Impressum/Datenschutz

Redaktion: Generalarzt a. D. Prof. Dr. med. Horst Peter Becker, MBA, Scharnhorststr. 4b, D-10115 Berlin, Mobil +49 171 215 0901, E-Mail: hpbecker@beta-publishing.com 

Herausgeber: Kommando Sanitätsdienst der Bundeswehr, Presse- und Informationszentrum des Sanitätsdienstes der Bundeswehr im Auftrag des Inspekteurs/der Inspekteurin des Sanitätsdienstes der Bundeswehr, Von-Kuhl-Straße 50, 56070 Koblenz, Telefon: +49 261 896 13210, E-Mail: pizsanitaetsdienst@bundeswehr.org

Wissenschaftliche Beratung: Die Begutachtung von Original- und Übersichtsarbeiten sowie Kasuistiken im Rahmen des Peer-Review-Verfahrens erfolgt durch in dem Fachgebiet des jeweiligen Beitrags wissenschaftlich ausgewiesene Expertinnen und/oder Experten, die – dem Einzelfall entsprechend – in Abstimmung zwischen Redaktion und Herausgeber ausgewählt und beauftragt werden.

Verlag: Beta Verlag & Marketinggesellschaft mbH, Carl-Zeiss-Str. 5, 53340 Meckenheim, Telefon +49 2225 8889–0, E-Mail: info@cpm-verlag.de; Geschäftsleitung: Tobias Ehlke; Objektleitung: Peter Geschwill; Produktionsleitung: Thorsten Menzel.

Druckversion: Druckvorstufe: PIC Crossmedia GmbH, Hitdorfer Straße 10, 40764 Langenfeld, E-Mail: info@pic-crossmedia.de; Druck: Bundesamt für Infrastruktur, Umweltschutz und Dienstleistungen der Bundeswehr (BAIUDBw), Zentraldruckerei Köln/Bonn.

Online-Version (E-Paper): Erstellung mit PIC MediaServer, PIC Crossmedia GmbH, Langenfeld; E-Paper und Autorenhinweise sind unter www.sanitaetsdienst-bundeswehr.de und www.wehrmed.de aufrufbar.

Rechtliche Hinweise: Die Zeitschrift (Druckversion und E-Paper) und alle in ihr enthaltenen Beiträge und Abbildungen sind in allen Publikationsformen urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Herausgebers unzulässig und strafbar. Dieses gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.
Alle namentlich gezeichneten Beiträge – soweit sie nicht ausdrücklich mit einem * gekennzeichnet sind – geben die persönlichen Ansichten der Verfasserin, des Verfassers oder der Verfasser wieder. Sie entsprechen nicht unbedingt den Auffassungen der Redaktion oder des Herausgebers. Manuskriptsendungen an die Redaktion erbeten. Erscheinungsweise mindestens achtmal im Jahr.
Für Mitglieder der Deutschen Gesellschaft für Wehrmedizin und Wehrpharmazie e. V. ist der Bezug der Zeitschrift im Mitgliedsbeitrag enthalten. Sanitätsoffiziere der Bundeswehr, die Mitglieder der Deutschen Gesellschaft für Wehrmedizin und Wehrpharmazie e. V. sind, erhalten die „Wehrmedizinische Monatsschrift“ über ihre Dienststellen.

Datenschutz: Es gelten die Datenschutzbestimmungen der Beta Verlag & Marketing GmbH, abrufbar unter https://www.beta-publishing.com/datenschutz.